1

Expressed sequence tag library development and characterization of polymorphic microsatellite

2	markers for the Neotropical spiral gingers, Costus (Costaceae)
3	
4	Kathleen M Kay, Vanessa E Apkenas, and Jennifer M Yost
5	
6	Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 1156 High
7	Street, Santa Cruz, CA 95064 USA
8	
9	Correspondence: Kathleen M. Kay, EE Biology, 1156 High Street, Santa Cruz, CA 95064 USA,
10	Fax: (831) 459-5353, E-mail: kmkay@ucsc.edu
11	
12	Keywords: Costus, EST library, EST-SSR, microsatellites
13	
14	Abstract
15	We present an expressed sequence tag (EST) library and a set of 15 polymorphic microsatellite
16	markers developed for the Neotropical understory rainforest herbs, Costus scaber and C.
17	pulverulentus (Costaceae). The EST library consists of 1221 reads, assembled into 912 unigenes.
18	We tested primers for 90 microsatellites from the EST library across 5 geographically disparate
19	populations each of C. pulverulentus and C. scaber and 6 more distantly related species from the
20	genus. These resources will be useful for ongoing ecological and evolutionary studies of this
21	rapidly diversifying genus.
22	

23 The spiral ginger genus *Costus* (Costaceae) has undergone a rapid and recent radiation in the 24 Neotropical forests, and provides an excellent study system for investigating ecological and 25 evolutionary processes underlying tropical plant diversity and floral evolution. *Costus* is thought 26 to have dispersed from Africa approximately 1.5-7.1 Ma and diversified into more than 50 27 species across the Neotropics (Kay et al., 2005). Costus scaber and Costus pulverulentus are 28 closely related species that have been a focus of studies of speciation (Kay, 2006). They, and 29 other Neotropical *Costus* species, have also been the focus of ecological studies of species 30 interactions and mating systems (e.g., Kay, Schemske, 2003). Here we report our efforts to 31 develop an expressed sequence tag (EST) library and polymorphic microsatellite markers, tools 32 that will expand the types of studies feasible in this genus. 33 34 We extracted total RNA from floral bud and leaf meristem tissue from a greenhouse-grown F1 35 hybrid between C. scaber (dam) and C. pulverulentus (sire). Both parent plants originated from

36 La Selva Biological Station, Herédia Province, Costa Rica (La Selva). We used the Invitrogen

37 PureLinkTM RNA Mini Kit, with the addition of ABI RNA Isolation Aid during tissue

38 homogenization. mRNA was then isolated with the Qiagen Oligotex mRNA Mini Kit and

39 evaluated with a NanoDrop 1000 and an agarose gel. A cDNA library enriched for full-length

40 transcripts was constructed from 174 ng pooled mRNA using the SMART cDNA library

41 construction kit (Clontech) with the following modifications to the protocol. PCR amplification

42 of first strand cDNA was done with Platinum-pfx DNA polymerase and its corresponding buffer

- 43 (Invitrogen). We omitted Sfi I digestion, ligated the cDNA to the pCR-Blunt II-TOPO vector
- 44 with a 1:1 vector:insert ratio, and transformed TOP10 cells with the Zero Blunt TOPO PCR

2

45	cloning kit (Invitrogen). A subset of colonies were checked for successful inserts with PCR
46	(forward primer 5'-AAGCAGTGGTATCAACGCAGAGT, reverse primer 5'-
47	AGGCGGCCGACATGTTTTTTTTTTT). Colonies were picked and grown in LB broth
48	overnight, and we isolated DNA for sequencing using the AccuPrep Plasmid MiniPrep DNA
49	Extraction Kit (Bioneer). Inserts from 1221 colonies were sequenced with the 5' SMART PCR
50	primer on the ABI 3100 machine in the UCSC MEEG Facility. We performed base calling with
51	Phred v.0.020425.c (Green and Ewing, 2002) and trimmed low quality and vector sequence and
52	poly-A tails using Lucy v 1.20 (Chou, Holmes, 2001). The reads were submitted to NCBI
53	GenBank dbEST (JK216135-JK217355). We assembled sequences with CAP3 (Huang, Madan,
54	1999), and created a unigene file containing 171 assembled contigs and 741 singletons.
55	
56	Using SSRIT (Temnykh et al., 2001) to find di-, tri-, tetra-, penta-, and hexa-nucleotide repeat
57	motifs with a minimum of 5, 4, 3, 3, and 3 subunits, respectively, we identified 112
58	microsatellites in our 912 unigenes, including 21 di-, 60 tri-, 23 tetra-, 6 penta-, and 2 hexa-
59	nucleotide repeats. We designed primers for 90 of these loci using Primer3 (Rozen, Skaletsky,
60	2000). We first screened all primer pairs for successful amplification using a single individual
61	from 5 populations each of C. scaber and C. pulverulentus and from six other Costus species
62	spanning the phylogeny of the genus. The populations of C. scaber and C. pulverulentus
63	encompassed their combined geographic ranges from Mexico to Bolivia. The additional six
64	species included Neotropical C. malortieanus, C. lima, C. spiralis, C. laevis, and C. ricus, and
65	Paleotropical C. tappenbeckianus. Loci that amplified consistently and exhibited more than one
66	allele across all species tested were then evaluated for polymorphism in a minimum of 20

67	individuals from the La Selva populations of C. pulverulentus and C. scaber, using DNA from
68	leaf tissue that we collected and silica dried in the field. Polymorphism levels within the
69	additional six species remain to be tested. All genomic DNA for this screening was extracted
70	from specimens growing in the UCSC greenhouses using Qiagen DNEasy Plant Mini Kit. Except
71	for C. tappenbeckianus, plants were originally collected in the field or acquired from the
72	collections of the University of Utrecht in the Netherlands, and voucher information for all
73	populations can be found in Kay et al. (2005). Costus tappenbeckianus DNA was sampled from
74	a clonal division of W.J. Kress 94–3697 (US).
75	
76	We screened loci with a nested PCR method with labeled 5' M13-FAM and 5' M13-HEX
77	primers (Schuelke, 2000). Reactions consisted of 12.5 μ l Promega GoTaq Hotstart Colorless
78	Mastermix, 0.65 µl of 10 pmol/µl 5' M13-tailed forward primer, 2.5 µl of 10 pmol/µl reverse
79	primer, 2.5 µl of 10 pmol/µl 5' M13 HEX or FAM labeled primer, 1 µl of DNA (concentration
80	varied from 10-200 ng/ μ l) and 5.9 μ l water for a final volume of 25 μ l. All reactions were run
81	with the following conditions: 94 °C for 5 min; 30 cycles of 94 °C for 30 s, touchdown annealing
82	starting at either 60, 62, or 64 °C for 45 s and decreasing by 0.5 °C each cycle, 72 °C for 45 s;
83	followed by 8 cycles of 94 °C for 30 s, 53 °C for 45 s, 72 °C for 45 s; and a final extension at 72
84	°C for 10 min. Products were verified on 0.8% agarose gels using 1x TBE or 1x SB buffer with
85	Biotium GelRed TM Nucleic Acid Gel Stain.
86	

87	Amplicons were sized at the UC Berkeley DNA Sequencing Facility, and alleles were scored
88	using Applied Biosystems Peak Scanner v1.0 software. We evaluated loci for allelic diversity
89	and Hardy-Weinberg equilibrium (HWE) with HW-QUICKCHECK (Kalinowski, 2006), tested
90	for linkage disequilibrium within each species with Genepop 4.1 (Raymond, Rousset, 1995;
91	Rousset, 2008), and tested for null alleles with MICRO-CHECKER using both the Brookfield
92	and Chakraborty estimators and a 99% confidence interval (Van Oosterhout et al., 2004). In
93	addition, representatives of successful loci were sequenced to reconfirm their identity.
94	
95	Seventy-four microsatellite loci out of ninety amplified consistently well across populations and
96	species with a single PCR product. Fifteen of these showed products that were bigger than
97	expected, indicating a possible intron. Forty-four loci amplified well but did not exhibit
98	polymorphism. The remaining 15 loci amplified consistently and showed polymorphism in the
99	La Selva populations (Table 1). No loci deviated significantly from HWE (Bonferroni-corrected
100	P < 0.05/15; Table 1), and no significant linkage disequilibrium was found between these
101	polymorphic loci following sequential Bonferroni correction. We also did not find any evidence
102	for null alleles in these populations. These 15 loci successfully amplified in the six other Costus
103	species, with the following rare exceptions: cdi4G6 in C. tappenbeckianus, ncdi8A10 in C.
104	malortieanus and C. ricus, and nctet3E6 in C. laevis.
105	
106	ESTs and the simple sequence repeats (SSRs) identified within them have become popular
107	resources for microsatellite marker development due to their low cost, wide accessibility in

108 online databases, transferability between taxa, and decreased error with null alleles (Ellis, Burke,

5

109 2007). However, they may have lower rates of polymorphism due to their location within coding 110 DNA. In contrast to our expectations, there were no consistent patterns governing the successful 111 development of reliable polymorphic SSRs in terms of the type of repeat or its location: di- and 112 tetra-nucleotide repeats were just as likely to be polymorphic as tri-nucleotide repeats, and SSRs 113 in the predicted open reading frame (ORF) were just as likely to amplify consistently and be 114 polymorphic as those outside the predicted ORF. In contrast to other reports in the literature that 115 SSRs are most common in the 5' UTR (reviewed in Bouck, Vision, 2007), we found 65 SSRs in 116 the predicted ORF, 33 in the predicted 3' UTR, and only 7 in the predicted 5' UTR (the 117 remaining 7 were found in unigenes without a predicted ORF). The number of alleles per locus 118 within a population for our successful microsatellites ranged from 1 to 11 (median 2), which is 119 relatively low for microsatellites. However, this relatively conservative rate of evolution 120 facilitates their wide transferability across the genus, as there appears to be little divergence in 121 the priming sites. With rare exception, all loci amplified across the genus, including the African 122 species C. tappenbeckianus, which falls well outside the Neotropical radiation of Costus. These 123 results suggest that these loci will infrequently exhibit null alleles and will be useful for future 124 ecological and evolutionary studies throughout the Neotropical *Costus*.

125

126 **References**

- 127 Bouck A, Vision T (2007) The molecular ecologist's guide to expressed sequence tags.
- 128 *Molecular Ecology* **16**, 907-924.
- 129 Chou H-H, Holmes MH (2001) DNA sequence quality trimming and vector removal.
- 130 *Bioinformatics* **17**, 1093-1104.

6

131	Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. <i>Heredity</i>
132	99 , 125-132.
133	Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. <i>Genome Research</i> 9 ,
134	868-877.
135	Kalinowski ST (2006) HW-QUICKCHECK: an easy-to-use computer program for checking
136	genotypes for agreement with Hardy-Weinberg expectations. Molecular Ecology
137	Notes 6, 974-979.
138	Kay KM (2006) Reproductive isolation between two closely related hummingbird-
139	pollinated Neotropical gingers. <i>Evolution</i> 60 , 538-552.
140	Kay KM, Reeves PA, Olmstead RG, Schemske DW (2005) Rapid speciation and the evolution
141	of hummingbird pollination in Neotropical Costus subgenus Costus (Costaceae):
142	Evidence from nrDNA ITS and ETS sequences. American Journal of Botany 92, 1899-
143	1910.
144	Kay KM, Schemske DW (2003) Pollinator assemblages and visitation rates for 11 species of
145	Neotropical <i>Costus</i> (Costaceae). <i>Biotropica</i> 35 , 198-207.
146	Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for
147	exact tests and ecumenicism. Journal of Heredity 86, 248-249.
148	Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for
149	Windows and Linux. <i>Molecular Ecology Resources</i> 8 , 103-106.
150	Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist
151	programmers. <i>Methods in Molecular Biology</i> 132 , 365-386.

152	Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments.								
153	Nature Biotechnology 18 , 233-234.								
154	Temnykh S, DeClerck G, Lukashova A, et al. (2001) Computational and experimental								
155	analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation,								
156	transposon associations, and genetic marker potential. <i>Genome Research</i> 11 , 1441-								
157	1452.								
158	Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software								
159	for identifying and correcting genotyping errors in microsatellite data. Molecular								
160	<i>Ecology Notes</i> 4 , 535-538.								
161									
162	Acknowledgements								
163	We thank A. Louthan for assistance with lab work, Y. Surget-Groba for assistance with								
164	microsatellite scoring, and C. Machado for advice on cDNA library construction. This work was								
165	partially supported by NSF DEB-0947138 to KMK.								
166									
167	Data Accessibility:								
168	DNA sequences: Genbank accessions JK216135-JK217355								
169									

Table 1. Characterization of 15 microsatellite loci [individuals screened (*n*), alleles observed at each locus (*k*), observed (H_O) and expected (H_E) heterozygosity, Hardy-Weinberg equilibrium probability (HWE)].

				Costus scaber					Costus pulverulentus				
Locus/ GenBank		Repeat motif in	Size										
Accession	Primer sequence (5' – 3')	clone	(bp)†	п	k	H_O	H_E	HWE	п	k	H_O	H_E	HWE
nctri170/ JK217202	F: TGGAGGGAATAGAGGTCGTG R: GCCGTGATCCATCCATTATT	(TCG)7	237- 249	20	3	0.45	0.50	0.36	23	3	0.30	0.33	0.52
ncdi8A10/ JK216680	F: GGGGTTTCTTCTCCGAGTCT R: AGGATAACACACACGCCTCC	(TC)17	180- 210	20	11	0.75	0.85	0.15	20	11	1.00	0.89	0.08
chex12B9/ JK216985	F: TGACAGCAGAGAGCGTATCG R: CTACCTCCGAATGTTTCCCA	(TTGCTG)4	189- 207	21	4	0.24	0.34	0.07	23	2	0.30	0.41	0.20
ctri13A12/ JK217056	F: TTGGGAACCAGAGGAAAATG R: ACGAACAGGTTCAATCCGTC	(GGC)7	253- 274	20	4	0.50	0.57	0.29	22	6	0.59	0.71	0.13
ctri2D9/ JK216253	F: GGAGAGCGAGCAGAGAACAC R: ATTGAACAGGGCGTCGATAG	(TCT)8	152- 170	21	5	0.38	0.41	0.46	23	4	0.52	0.54	0.50
ctri4A11/ JK216382	F: AGACGAAGACGACGATGTCC R: GCTGAGGTATTCAGATCGCC	(GAC)5	230- 233	21	2	0.24	0.47	0.03	22	1	-	-	-
nctri1C9/ JK216161	F: GAGACCCCTGTTGTTGTCGT R: GTTCTCCATCACCACCATCA	(TGT)5	151- 154	20	2	0.05	0.05	0.50	23	2	0.09	0.23	0.02
nctri113/ JK216242	F: GCTCCTGTGGTTGCTTCTTC R: CTGCAACATGGAATCCAACA	(CAT)4	135- 138	20	2	0.10	0.10	0.97	20	1	-	-	-
ctri3B1/ JK216305	F: CCCGTCATTTCTGCTGTGTA R: GACAACAGGGCCTCTTTGAA	(TGA)4	246- 255	23	2	0.09	0.09	0.98	20	1	-	-	-

Table 1. Characterization of 15 microsatellite loci [individuals screened (*n*), alleles observed at each locus (*k*), observed (H_O) and expected (H_E) heterozygosity, Hardy-Weinberg equilibrium probability (HWE)].

				Costus scaber				Costus pulverulentus					
Locus/		Repeat											
GenBank Accession	Primer sequence (5' – 3')	motif in clone	Size (bp)†	n	k	H_O	H_E	HWE	n	k	H_O	H_E	HWE
nctet3E6/ JK216336	F: CAGTTGGAGGAAGAATCCGA R: CGGCACACCCCTTTTTAAT	(TGTA)3	144- 148	21	2	0.05	0.05	0.50	23	2	0.13	0.20	0.22
cdi10E12/ JK216871	F: CACGAGCACCATGAGAAGAA R: TCTTCACAAGCCACAAGCAG	(AG)6	156- 168	20	2	0.05	0.05	0.50	20	2	0.10	0.10	0.97
cdi4G6/ JK216441	F: TAGCCCGAGTCAAGCAGATT R: GTTTCGCCCGTGATACAACT	(AT)6	233- 243	20	6	0.50	0.69	0.04	20	4	0.60	0.59	0.57
ctri3D11/ JK216330	F: CTCGAGACTTCTCCTCGTCG R: AATATGTCACGGTTACCGCC	(TCC)5	270- 276	21	2	0.38	0.48	0.29	20	3	0.15	0.14	0.92
ctet53/ JK216440	F: CAAGAACGCCGTCAAGTACC R: ACTGATCTGTCGTTTGCACG	(TGTT)3	172- 184	25	2	0.32	0.49	0.08	26	3	0.46	0.50	0.45
ctet5C2/ JK216473 †Size given	F: TCCGATGCGTGTAGTTTCTG R: ATGCACAAGAAGAGGCCTGA includes 18 bp M13-tail	(GAAA)3	256- 259	20	1	-	-	-	20	2	0.05	0.05	0.50